
• Urban acoustic sensors may pick up human voice in some recordings. 
• To maintain privacy, we need to ensure that conversations are not discernible 

and voices are not identifiable, we need anonymization methods.
• Need for anonymization methods which :

• Backgrounds: SONYC-UST dataset. 1744 urban recordings (without 
human voice) from New York City. Labeled in 7 coarse classes: engine, 
machinery impact, non-machinery impact, powered saw, alert signal, music.

• Voices: 

• VoxCeleb Recordings of celebrities (1211 speakers for training ans 
40 for testing) labeled in speaker. Used for training the separation 
system and evaluating speaker identity masking. 

• LibriSpeech English speakers reading book extracts (1000 hours 
long). Used to evaluate content obfuscation. 

• Mixing 

• Training Mix 2<N<5 excerpts of voice from VoxCeleb with 
backgrounds from SONYC

• Testing 2 voice to background ratio conditions Low (⍺ ∈ [0:1; 
0:4]), ) and High (⍺ ∈ [0:5; 0:7])      mix = ⍺ background + (1-⍺) 
voice 
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Blurring with either :
      - Low Pass filter (LP)
      - MFCC inversion (MFCC)
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•Source separation metrics [2]
  IBM : Ideal Binary Masks
•Better separation in High SNR 
setting.

•The quality of the separation 
impact the qual ity of the 
blurring.

• Use of LibriSpeech for easier transcription
• Blur separated version are never transcripted. 
• Only resynthesis does not fully obfuscate the content -> due to the quality of the 
separation

•Trends in ASR experiment replicated in human listening test
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spectrogram for visualisations purpose only, some operations are performed in temporal domain
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SNR Model SDR (std) SIR (std) SAR (std)

Low
U-Net 8.20 (4.9) 13.01 (5.4) 10.98 (4.5)

IBM 12.39 (4.3) 19.21 (4.3) 13.62 (4.3)

High
U-Net 12.31 (4.0) 16.91 (4.0) 12.31 (3.3)

IBM 17.98 (3.0) 21.26 (3.3) 16.19 (2.98)

Experiments

•VoxCeleb’s VggVox model for speaker 
identification

•Both in High and Low, our blurring 
method decrease the identification

•Need for human evaluation, but 
necessitate training

SNR Audio
% correct 

Identification

High

Mix 83

Low Pass filter 43

MFCC inversion 43

Low

Mix 43

Low Pass filter 29

MFCC inversion 29

Human experimentAutomatic classification experiment

•Baseline for the Urban Sound Tagging challenge
  for DCASE 2019, for automatic experiment. Use of VGGish features.
•8 coarse classes. 
•Classify mixes and blurred versions to assess how much of the scene is 
preserved

•Our blurring method preserve the acoustic scene.
•Trends in classification experiment replicated in human listening test
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